Scattered data interpolation by box splines
نویسندگان
چکیده
Given scattered data in IR, interpolation from a dilated box spline space SM (2 ·) is always possible for a fine enough scaling. For example, for the Lagrange function of a point θ one could take any shifted dilate M(2 · −j) which is nonzero at θ and zero at the other interpolation points. However, the resulting interpolant, though smooth (and local), will consist of a set of “bumps”, and so by any reasonable measure provides a poor representation of the shape of the underlying function. On the other hand, it is possible to choose a space of interpolants which contains some M(2 · −j) of arbitrarily large support. But the resulting methods are increasingly less local, and in general still require some splines with a much higher level of dilation. Here we provide a multilevel method which constructs a space of interpolants by taking as many splines as possible from a given dilation level, then as many from the next (higher) dilation level, and so forth. The choice at each level is made using the suggestion of [W99], which is based on the Riesz representation theorem. This requires an inner product on the ground space SM , and the higher levels SM (2 ·) ⊖ SM (2 ·), k = 1, 2, . . .. The inner products used here involve the box spline coefficients, and prewavelet coefficients of [RS92], respectively, and are norm equivalent to ‖ · ‖L2(IRs). These lead to a scheme which is easily implemented, and numerically stable. Previously, box spline interpolants have been considered only for data on a regular grid.
منابع مشابه
Spherical Splines for Scattered Data
We study properties of spherical Bernstein-Bézier splines. Algorithms for practical implementation of the global splines are presented for a homogeneous case as well as a non-homogeneous. Error bounds are derived for the global splines in terms of Sobolev type spherical semi-norms. Multiple star technique is studied for the minimal energy interpolation problem. Numerical summary supporting theo...
متن کاملScattered data interpolation by bivariate splines with higher approximation order
Given a set of scattered data, we usually use a minimal energy method to find Lagrange interpolation based on bivariate spline spaces over a triangulation of the scattered data locations. It is known that the approximation order of the minimal energy spline interpolation is only 2 in terms of the size of triangulation. To improve this order of approximation, we propose several new schemes in th...
متن کاملThe convergence of three L1 spline methods for scattered data interpolation and fitting
The convergences of three L1 spline methods for scattered data interpolation and fitting using bivariate spline spaces are studied in this paper. That is, L1 interpolatory splines, splines of least absolute deviation, andL1 smoothing splines are shown to converge to the given data function under some conditions and hence, the surfaces from these three methods will resemble the given data values...
متن کاملInterpolation of fuzzy data by using flat end fuzzy splines
In this paper, a new set of spline functions called ``Flat End Fuzzy Spline" is defined to interpolate given fuzzy data. Some important theorems on these splines together with their existence and uniqueness properties are discussed. Then numerical examples are presented to illustrate the differences between of using our spline and other interpolations that have been studied before.
متن کاملVolume Data Interpolation using Tensor Products of Spherical and Radial Splines
Trivariate splines solve a special case of scattered data interpolation problem in the volume bounded by two concentric spheres. A triangulation ∆ of the unit sphere S is constructed based on the vertex set V. Given a partition P of the interval [1, R], let Sτ×ρ σ×δ be the space of the spherical splines of degree σ and smoothness τ over ∆ tensored with the univariate radial splines of degree δ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007